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Abstract. In this paper we present a new algorithm to counteract state
explosion when using Explicit State Space Exploration to verify protocol-
like systems.

We sketch the implementation of our algorithm within the Caching
Murϕ verifier and give experimental results showing its effectiveness.

We show experimentally that, when memory is a scarce resource, our
algorithm improves on the time performances of Caching Murϕ veri-
fication algorithm, saving between 16% and 68% (45% on average) in
computation time.

1 Introduction

State Space Exploration (Reachability Analysis) is at the very heart of all algo-
rithms for automatic verification of concurrent systems.

As well known, the main obstruction to automatic verification of Finite State
Systems (FSS) is the huge amount of memory required to complete state space
exploration (state explosion).

For protocol and hybrid systems verification, Explicit State Space Explo-
ration often outperforms Symbolic (i.e. OBDD based, [4,5]) State Space Explo-
ration [1,13,8]. Since here we are mainly interested in protocol verification we
focus on explicit state space exploration. Tools based on explicit state space
exploration are, e.g., SPIN [17,23] and Murϕ [11,19].

In our context, roughly speaking, two kinds of approaches have been studied
to counteract (i.e. delay) state explosion: memory saving and auxiliary storage.

In a memory saving approach essentially one tries to reduce the amount of
memory needed to represent the set of visited states. Examples of the memory
saving approach are, e.g., in [30,7,18,28,26,16,12].
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In an auxiliary storage approach one tries to exploit disk storage as well as
distributed processors (network storage) to enlarge the available memory (and
CPU). Examples of this approach are, e.g., in [24,25].

1.1 Background

In [27,10,9] we presented verification algorithms exploiting statistical properties
of protocol transition graphs to save on RAM usage as well as to speed up disk
based Breadth First (BF) state space exploration. Our algorithms have been
implemented within the Murϕ verifier. We call CMurϕ (Caching Murϕ [6]) the
resulting verifier.

Shortly, CMurϕ takes advantage of a statistical property of protocol transi-
tion graphs, namely the transition locality. That is, w.r.t the levels of a BF state
space exploration, state transitions tend to be between states belonging to close
levels of the transition graph. Thus, CMurϕ replaces the hash table used in a
BF state space exploration with a cache memory (i.e. no collision detection is
done) and uses auxiliary (disk) storage for the BF queue. The rationale behind
this approach is that a cache maintains only recently visited states. Thanks to
transition locality this is sufficient, in most cases, to complete the verification
task. Our experimental results [27,9] show that, with the same amount of RAM,
CMurϕ can verify systems more than 40% larger than those that can be handled
using a hash table based approach. On the other hand, CMurϕ verification time
can be up to twice that of standard Murϕ.

Note that CMurϕ caching techniques is not an alternative to state compres-
sion techniques (e.g. hash compaction [28,26,16,12]) or to state space reduction
techniques (e.g. symmetry and multiset reduction [7,18], partial order reduction
[22]). On the contrary, caching is intended to be used together with the available
reduction options [27,9]. The only thing that caching does is storing data in
the cache. Such data can be full states, state signatures, or anything else. This
is not relevant to the caching schema. This, of course, may be relevant for the
effectiveness of the caching schema. As long as the implemented BF search uses
a hash table to store visited states (or their signatures) CMurϕ caching scheme
can be used. For this reason CMurϕ can reuse all state reduction procedures
implemented in the standard Murϕ verifier [27].

1.2 Goal

CMurϕ memory saving stems from the fact the most transitions are local. On
the other hand, CMurϕ time penalty stems from the fact the not all transitions
are local. A nonlocal transition leading to a rather old state that has been over-
written (and thus forgotten) in CMurϕ cache may trigger revisit of large portions
of the transition graph and may even lead to nontermination because of loops
in the transition graph. The higher CMurϕ cache collision rate (i.e. the ratio
between collisions and insertions) the higher the probability of revisiting already
visited states because of nonlocal transitions.

When the collision rate is high (i.e. close to 1) it means that we do not
have enough RAM to hold all visited states. So our only hope to decrease the



56 G. Della Penna et al.

time penalty due to revisiting in such a situation is to make a better use of the
available RAM.

Quite clearly a (large) fraction of the available RAM must be used to store
recently visited states. This is indeed what CMurϕ already does. Here we propose
to use a (small) fraction of the available RAM to store hub states, that is states
that have an in-degree (i.e. number of incoming transitions) much greater than
the average in-degree of the set of reachable states. The rationale behind such
proposal is that many nonlocal transitions will lead to hub states. Thus avoiding
revisiting hub states (and so their successors) may be an effective way to reduce
CMurϕ time penalty when the collision rate is high.

Note that when the collision rate is low (close to 0) it means that we have
(almost) enough RAM to store all reachable states. In such a case CMurϕ does
not incur any time penalty. That is, verification with CMurϕ takes the same
amount of time as with standard Murϕ [19].

Unfortunately our goal of storing hub states faces a substantial obstruction:
we do not know before hand if a state is a hub or not. Thus, to carry out our
goal we need a both time and memory effective way to select hub states among
the states visited so far. In other words, the obstruction here is not in storing
(the few) hub states, but rather in recognizing that a state seen during the visit
is indeed a hub state.

In this paper we show that protocol-like systems do have hub states and
present an effective algorithm to select hub states among the states visited so
far.

Intuitively, we use a hard to write cache L2, that is a cache in which an
insertion request is actually carried out with (a small) insertion probability p.
This means that states that are frequently seen during our visit will have a
greater chance than seldom seen states of actually making their way into L2. As
a result, statistically speaking, L2 will tend to store the hub states among the
states visited so far. Of course not all hub states will be in L2 nor all states in
L2 will be hubs. Still, we can show experimentally that L2 is an effective way to
catch hub states.

1.3 Main Results

Our main results can be summarized as follows.
In Section 3 we show experimentally that protocol-like systems do have hub

states. We support our claim by measuring the distribution of the in-degree
of the reachable states for the set of protocols included in the Murϕ verifier
distribution [19].

In Section 4 we present our algorithm to select hub states among the states
visited so far.

In Section 5 we show how an appropriate value for the insertion probability
p in L2 can be computed.

We implemented our algorithm within the CMurϕ [6] verifier. We call
HubCMurϕ the resulting verifier. In Section 6 we give experimental results on
HubCMurϕ as compared to CMurϕ. Our experimental results show that when
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the collision rate is high typically HubCMurϕ allows between 16% and 68% (45%
on average) of saving in the verification time. Of course when the collision rate
is low HubCMurϕ behaves essentially as CMurϕ.

1.4 Related Works

A rather systematic study of statistical properties of transition graphs is pre-
sented in [21]. The author of [21] concludes that there are no hubs in transition
graphs. Note however that the definition of hub state used in [21] is different
form ours. For us a reachable state s is a hub state if its in-degree is much higher
than the average in-degree of the reachable states whereas [21] also requires the
s in-degree to be not too smaller than the number of (reachable) states.

Of course what is the right definition of hub depends on the intended ap-
plication. Anyway, because of this different definition of hub states there is no
contradiction between our results about hub existence and those in [21].

Moreover the focus of our paper is not proving or disproving hub existence
but rather finding ways to exploit the fact that there are states whose in-degree
is much higher that the average one. Finally, the issue of exploiting statistical
properties of transition graphs is not investigated in [21].

A survey on caching schemes is presented in [15]. Note however that [15]
studies Depth First (DF) search with a linked list based hash table. Caching
Murϕ [27,9] instead uses a BF search with an open addressing hash table. As
remarked in [15] this is a quite different scenario. In fact, CMurϕ caching schema
works quite well [27,9] with open addressing and BF search and does not seem
to work with a DF search (SPIN like).

Note that we do not reduce the state space using our hub states. So our
approach has nothing to do with Partial Order (PO) reduction [22] techniques.
On the other hand we can exploit hub states (if any) in a PO reduced state
space.

Finally, [3], using static analysis techniques, studies the issue of which states
should be stored in order to save RAM. The results in [3] are orthogonal to ours,
note however that the two approaches can be usefully combined.

2 Background

In this section we give some basic definitions that will be useful in the following.
For our purposes, a protocol is represented as a Finite State System.

Definition 1
1. A Finite State System (FSS) S is a 4-tuple (S, I, A, R) where: S is a finite

set (of states), I ⊆ S is the set of initial states, A is a finite set (of transition
labels) and R is a relation on S × A × S. R is usually called the transition
relation of S.

2. Given states s, s′ ∈ S and a ∈ A we say that there is a transition from s to
s′ labeled with a if and only if R(s, a, s′) holds. The set of successors of state
s (notation next(s)) is the set of states s′ such that there exists a ∈ A such
that R(s, a, s′) holds.
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3. The set of reachable states of S (notation Reach(S)) is the set of states of
S reachable in 0 (zero) or more steps from I. Formally, Reach(S) is the
smallest set such that
1. I ⊆ Reach(S), 2. for all s ∈ Reach(S), next(s) ⊆ Reach(S).

FIFOQueue Q; HashTable T;

bfs(FSS S) { let S = (S, I,A, R);
foreach s in I {Enqueue(Q, s); Insert(T, s);} /*init */

while (Q is not empty) { s = Dequeue(Q);
foreach s’ in next(s) { if (s’ is not in T) {

Insert(T, s’); Enqueue(Q, s’); }}}}

Fig. 1. Basic Breadth First Search

In the following we will always refer to a given system S = (S, I, A, R). Thus,
for example, we will write Reach for Reach(S). Also, we may speak about the
set of initial states I as well as about the transition relation R without explicitly
mentioning S.

The core of all automatic verification tools is the reachability analysis, that
is the computation of Reach given a definition of S in some language.

Since the transition relation R of a system defines a graph (transition graph),
computing Reach means visiting (exploring) the transition graph starting from
the initial states in I. This can be done, e.g., by using a Depth–First (DF) search
or a Breadth–First (BF) search. For example, Murϕ [19] and (the latest version
of) SPIN [23] may use a DF as well as a BF search.

In the following we will focus on BF search. The Murϕ algorithm for the BF
visit is shown in Figure 1. Namely, function bfs of Figure 1 takes as input a FSS
S and performs a BF visit of S transition graph. To this end, it uses a FIFO
queue Q and a hash table T. The first maintains the BF front (i.e. the states to
be expanded), while the latter stores the visited states, so avoiding to revisit
the same states. Thus, state explosion occurs on T and Q. Finally, note that, if
T and Q fit in the available memory, bfs will surely terminate, since the set of
reachable states is finite.

3 Hub States

Inspired by [14,2,29] we call hub a reachable state which in-degree is much higher
than the average in-degree of all reachable states. Note that, as discussed in
Section 1.4, our definition of hub state is different from the one used in [21].

In this section we show experimentally that for protocol-like systems hub
states do exist. We do this by showing that all our benchmark protocols indeed
have hub states. We use as benchmark protocols all those available in the Murϕ
verifier distribution [19]. The protocols tested cover a wide range of concurrent
software typologies such as synchronization, authentication, cache coherence,
distributed locks, etc. Thus we have a fairly representative benchmark set.
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3.1 Measuring Hub States Presence

In this section we give the basic definitions needed to understand the experi-
mental results in Section 3.2.

Definition 2. Let S = (S, I, A, R) be an FSS, and let s ∈ S be a state. We
call in-degree of the state s the number indeg(s) of transitions leading to s. That
is: indeg(s) = |{(r, a) ∈ Reach(S) × A | R(r, a, s)}|.

Our goal is to study the in-degree distribution in protocol-like systems. As
usual when reporting statistical results, to make distributions relative to different
systems easily comparable we replace the absolute number of states with the
fraction x of reachable states and the actual in-degree value with its fraction of
the maximum in-degree. In this way all quantities lie in the interval [0, 1].

To build the in-degree distribution we proceed in the standard way. Namely,
we divide the interval [0, 1] in � 1

∆� subintervals of length ∆ and, for each subin-
terval k, we compute the fraction of the reachable states whose fraction of the
maximum in-degree falls in interval k. The following definition gives the formal
details.

Definition 3. Let S = (S, I, A, R) be an FSS, Mindeg = max{indeg(t)|t ∈
Reach(S)} be the maximum in-degree of S and ∆ ∈ [0, 1].

– We define function θ : (0, 1] × N → [0, 1] as follows:

θ(∆, k) =
| {s ∈ Reach(S) | (k − 1)∆Mindeg < indeg(s) ≤ k∆Mindeg} |

|Reach(S)|
Function θ(∆, k) returns the fraction of reachable states whose in-degree is
a fraction y ∈ ((k − 1)∆, k∆] of the maximum in-degree. In other words,
θ(∆, k) returns the probability that a reachable state has an in-degree which
is a fraction y ∈ ((k−1)∆, k∆] of the maximum in-degree. Thus, technically
speaking, θ(∆, k) is a probability density. Of course, for us, function θ(∆, k)
is only interesting when k ≤ 1

∆ .
– We define function τ : (0, 1] × [0, 1] → [0, 1] as follows:

τ(∆, x) = θ
(
∆,

⌈ x

∆

⌉)

We also write τ∆(x) for τ(∆, x) and denote with τ∆ function λx.τ(∆, x).
That is, τ∆ : (0, 1] → [0, 1] is defined as τ∆(x) = τ(∆, x).
Note that function τ∆ is completely defined once we know the values τ∆(∆),
τ∆(2∆), . . . τ∆(1).

3.2 Experimental Results About Hub States

To carry out our plan we modified the Murϕ verifier so as to compute function τ
in Definition 3. Namely, we compute τ 1

n
( 1

n ), . . . , τ 1
n
(n−1

n ), τ 1
n
(1) while performing

state space exploration. In our experiments, we set n = 20.
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Our results are shown in Figure 2 where, for each protocol in our benchmark,
we plot τ( 1

n , x) (y-axes) versus the fraction x of the maximum in-degree (x-axes).
The graphs in Figure 2 show that most reachable states have an in-degree

that is a rather small fraction of the maximum in-degree. However there is a
small fraction of states that have an in-degree that is close to the maximum
in-degree.
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Fig. 2. Density of probability τ 1
20

graphs for protocols included in the Murϕ distribu-

tion. The curves show the fraction of reachable states y which in-degree is a fraction x
of the max in-degree. Thus, by definition y > 0 when x = 1. Note log scale on y axes.
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4 Exploiting Hub States in State Space Exploration

In this section we present an algorithm that is able to effectively select hub
states among the states visited so far. Note that the correctness of our algo-
rithm does not depend on the results in Section 3. However such results will
help us to understand why the proposed algorithm is effective on protocol-like
systems.

Before describing our algorithm, in Figure 3 we briefly recall the CMurϕ
[9] one. With respect to Figure 1, we have that in Figure 3 the queue is now
implemented on disk, and the hash table T is replaced by a cache. That is, if the
insertion of a state s’ causes a collision because of a state t already in cache
T, then t is overwritten (and thus forgotten). This implies that, if t is reached
again, it will be revisited, since it is not in our cache anymore. This means that
in general cache T may not be able to prevent nontermination of our visit. As
shown in Figure 3, to guarantee termination in CMurϕ, the main while cycle is
guarded by the collision rate, i.e. the ratio between the number of collisions and
the number of insertions in cache T. In fact, when the collision rate becomes too
high, we are visiting over and over the same set of states. In this case we should
give up our verification task because of lack of memory.

In order to improve CMurϕ time performances, we present a new two-level
caching algorithm. The rationale behind this algorithm is the one discussed in
Section 1.2.

To implement the ideas in Section 1.2 we proceed as follows. We modify the
cache based BF algorithm in Figure 3 as shown in Figures 4 and 5. Namely, we
split cache T in two parts, L1 and L2, with a split ratio 0 < ph < 1. Thus, if
M was the amount of RAM dedicated to T, then phM is now dedicated to L1
and (1 − ph)M to L2. In our experiments, we set ph = 0.7. This is a reasonable
value, since hub states are always a very small subset of the reachable states (see
Figure 2).

The idea is to use L1 to store the recently visited states, so inheriting the
goal of T (i.e. to exploit transition locality) in CMurϕ, and L2 (our hard to write
cache) to store the hub states. To this end, the algorithm now stores the visited
states in L1 (function Insert in Figure 4) and, when the insertion of a state s’
causes a collision in L1 on state t, t is passed to L2 before being overwritten. If
this causes a collision also in L2 on a state r, r will be overwritten by t with
a fixed probability p ovrwrt (functions Insert L2 and prob decide in Figure
5). Of course a state is considered visited if it can be found in L1 or L2 (see
functions Insert and Lookup L2 in Figures 4 and 5, respectively).

In this way, if state t is a hub, it will have a high probability of being
eventually inserted in L2 and remaining there. In fact, since t will be reached
more often than the other states, it will be often present and overwritten in L1
and, as a result, it will attempt insertion in L2 many times. This gives t more
chances of entering L2 since it will compete more times for the insertion.

We implemented the algorithm of Figures 4 and 5 within the CMurϕ verifier
[6], calling HubCMurϕ the resulting verifier.
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FIFOQueue Q; Cache T;

collision_rate = 0.0; /* #collisions on T
#insertions in T */

cbfs(FSS S) { let S = (S, I,A, R);
foreach s in I {Enqueue(Q, s); Insert(T, s);}

while ((Q is not empty) and (collision_rate <= 0.9)) {

s = Dequeue(Q);
foreach s’ in next(s) if (s’ is not in T) {

Insert(T, s’); Enqueue(Q, s’);}}}

Fig. 3. Cache based Breadth First Search

Insert(s) {h = hash_key (s);

if (L1[h] == s) { /* cache hit (state found)*/

return true; /* report a cache hit */

} else { /* s not in L1 */

if (Lookup_L2 (s)) { /* but s is in L2 */

return true; /* report a cache hit */

} else { /*s is neither in L1 nor in L2 , insert it*/

if (L1[h] is empty) {L1[h] = s;

} else { /* the slot is full , overwrite it */

s’ = L1[h];
/* before overwriting s’ , pass it to L2 */

Insert_L2 (s’); L1[h] = s; }}

return false; /* report a cache miss */ }}

Fig. 4. Function Insert

Lookup_L2 (s) { h = hash_key2 (s);

if (L2[h] == s) return true; else return false; }

Insert_L2 (s) { h = hash_key2 (s);

if (L2[h] == s) return true; /* report a cache hit */

else if (L2[h] is empty) L2[h] = s;

else /* slot full , we may choose to overwrite */

if ( prob_decide (p_ovrwrt )) L2[h] = s;

return false; /* report a cache miss */ }

prob_decide (p) {

return true with probability p, false otherwise ;}

Fig. 5. Functions Lookup L2, Insert L2 and prob decide
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5 Tuning the Overwrite Probability

As already said in Section 4, a state that causes a collision in the L2 cache is
overwritten with a fixed probability p ovrwrt. To make L2 effective in finding
and retaining hub states, it is important to choose a suitable value of p ovrwrt.

We carried out a set of experiments to determine a reasonable value
for p ovrwrt. In particular, Figure 6 shows the collision rate as a func-
tion of the fraction of visited reachable states for values of p ovrwrt in
{10−4, 10−3, 10−2, 10−1, 1}. When p ovrwrt ≤ 10−5 the collision rate becomes
soon pretty high and the visits stops. This is because when p ovrwrt s too small
it is almost like not having L2 at all. For this reason we only plotted p ovrwrt
in the range {10−4, 10−3, 10−2, 10−1, 1}. Note that the protocol set used in these
experiments is the same one used in Section 6 to assess performances of our
algorithm.

Figure 6 shows that when p ovrwrt is 1 there are cases in which verification
does not terminate. For example this happens for protocols mcslock1, mcslock2
and newlists6 in Figure 6.

Note that setting p ovrwrt to 1 is equivalent two using the standard victim
cache approach in processor design [20]. However, this does not work in our
setting, since in this way the algorithm will overwrite too many states (hubs
included) thus leading to nontermination.

On the other hand if p ovrwrt is too small (namely less than 10−4) then
L2 will (almost) never be used and, all in all, we have wasted a fraction ph (see
Section 4) of our RAM.

Finally, if p ovrwrt is small enough, only states that are encountered many
times during the exploration process will make their way to L2. Summing up, in
our experiments we choose to set p ovrwrt = 10−4.

6 Experimental Results

We report the experimental results we obtained using HubCMurϕ (Section 4).
We want to measure how much time and (RAM) memory we can save by

using our approach. To make the results from different protocols comparable we
proceed as follows.

First, for each protocol we determine the minimum amount of memory needed
to complete verification using the Murϕ verifier (namely Murϕ version 3.1 from
[19]).

Let M be the amount of memory and g (in [0, 1]) be the fraction of M used
for the queue (i.e. g is gPercentActive using a Murϕ parlance). We say that
the pair (M , g) is suitable for protocol p iff the verification of p can be completed
with memory M and queue gM . For each protocol p we determine the least M
s.t. for some g, (M , g) is suitable for p. In the following we denote with M(p)
such M .

Of course M(p) depends on the compression options one uses. Murϕ offers
bit compression (-b) and hash compaction (-c). However, since in our scenario
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Fig. 6. Collision rate as a function of the fraction of visited protocol states. Each
graph shows the collision rate for values of p ovrwrt in {10−4, 10−3, 10−2, 10−1, 1}. A
missing line indicates that the verifier was unable to complete the verification with the
corresponding value of p ovrwrt.

RAM is a scarce resource, in the following we only consider the case in which both
options are enabled on all verifiers (i.e. Murϕ, CMurϕ, HubCMurϕ). Moreover,
in order to visit all reachable states, all experiments have been carried out with
deadlock detection disabled (-ndl).

Our results are in Figure 7, where we only show protocols requiring at least
10 kilobytes of RAM and a nonnegligible amount of time to complete state space
exploration. In Figure 7, column M gives the minimum amount of memory (in
kilobytes) needed to complete state space exploration and column T gives the
time (in seconds) to complete state space exploration when using memory M.
Finally, column Reach gives the number of reachable states.

Our next step is to run each protocol p with less and less memory using
both HubCMurϕ and CMurϕ. That is we run protocol p with memory limits
αM(p), α ∈ [0, 1], with the new (L1+L2) and the old (just CMurϕ L1) cache
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based algorithm. This approach allows us to easily compare the experimental
results obtained from different protocols.

The results obtained in such a way are in Fig. 9. Note that in these experi-
ments the value used for g (gPercentActive) is not relevant since the queue is
implemented on disk. We give the meaning of rows and columns in Fig. 9.

Column α (with α ∈ [0, 1]) gives information about the run of protocol p
with memory αM(p) (for this reason, the row heading is Mem).

Row States gives Nhub

Nnohub
, where Nnohub is the number of visited states using

CMurϕ and Nhub is the number of visited states using HubCMurϕ.
Row Time gives Thub

Tnohub
, where Tnohub is the computation time needed by

CMurϕ and Thub is the computation time needed by HubCMurϕ.
A verifier (CMurϕ or HubCMurϕ) is stopped when its collision rate be-

comes greater than 0.99. We mark with a ∗ superscript the data obtained when
CMurϕ gives up state space exploration because its collision rate exceeds the
given threshold (0.99) and, on the contrary, HubCMurϕ succeeds in completing
the verification. In such cases, instead of giving a ratio, rows States and Time
display, respectively, the absolute values for the visited states and the computa-
tion time (in seconds) of HubCMurϕ. Note that there was no case in which only
CMurϕ completed the verification.

We are interested in the case in which the collision rate is high, since this
means that we do not have enough RAM to store all visited states. For this
reason when comparing CMurϕ and HubCMurϕ performances we only consider
the results obtained from the experiments relative to the least α in which both
CMurϕ and HubCMurϕ terminate. This means that column (α - 0.01) is marked
with a ∗ (only HubCMurϕ terminates). When the collision rate is low (i.e. we do
have enough memory to store most of the visited states) CMurϕ and HubCMurϕ
have similar performances. This can be seen from Figure 9 by looking at the
column with the largest value of α (namely the leftmost column).

The experimental results in Figure 9 show that, with respect to CMurϕ,
HubCMurϕ typically saves from 16% to 68% (45% on average) in computation
time. Note also that for all protocols there are cases in which, with the available
memory, only HubCMurϕ is able to terminate.

Of course there are protocols (e.g. n peterson in Figure 9) where HubCMurϕ
is less efficient than CMurϕ. We conjecture that this is due to the shape of the
in-degree distribution curves in Figure 2. First, we should note that, technically
speaking, the curves in Figure 2 are density of probabilities. Now, for each proto-
col p we can compare the curve for p in Figure 2 with HubCMurϕ performances
for p as from Figure 9. From this we see that if the curve of p is rather concen-
trated (i.e., has a small variance) then HubCMurϕ performs well on p (e.g., as
for protocol sci). On the other hand, if p curve has a large variance (e.g. as for
mcslock2 and n peterson) then HubCMurϕ does not perform well on p.

We also wanted to test our approach with a large protocol that heavily loads
our machine. The results are in Fig. 8. We used protocol sci with parameter
MemorySize set to 5. As shown in [10], this protocol has 75,081,011 reachable
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Protocol Reach M T
n peterson 163298 813 273.32

adash 10466 55 62.98
cache3multi 13738 73 35.11
newlist6 13044 67 18.34
mcslock1 23644 120 16.76
mcslock2 540219 2693 237.48

sci 18193 94 28.17

Fig. 7. Results on a SUN Sparc
machine with 512M RAM

Mem 0.41 0.37

States 80430178∗ 84045856∗
Time 47129∗ 46604∗
Mem 0.33 0.29

States 92322597∗ 120543398∗
Time 51009∗ 66676∗

Fig. 8. HubCMurϕ experimental
results for protocol sci-31151

with parameter MemorySize = 5

Mem 0.60 0.59 0.58 0.57 0.56 0.55 0.54 0.53 0.52 0.51 0.50 0.49
mcslock1 States 0.603 0.352 72358∗ 104019∗ 134834∗

Time 0.69 0.42 3.89∗ 5.62∗ 7.36∗
Mem 0.60 0.59 0.58 0.57 0.56 0.55 0.54 0.53 0.52 0.51 0.50 0.49

cache3multi States 0.828 0.89 0.769 0.77 66687∗ 87096∗
Time 0.83 0.92 0.78 0.79 19.39∗ 25.22∗
Mem 0.60 0.59 0.58 0.57 0.56 0.55 0.54 0.53 0.52 0.51 0.50 0.49

mcslock2 States 0.99 0.976 0.956 0.93 0.919 0.885 0.805 0.714 1164348∗ 1397335∗ 2085105∗
Time 1.19 1.16 1.14 1.12 1.09 1.05 0.96 0.84 39.67∗ 47.92∗ 72.06∗
Mem 0.60 0.59 0.58 0.57 0.56 0.55 0.54 0.53 0.52 0.51 0.50 0.49

newlist6 States 0.697 0.296 48882∗ 63843∗
Time 0.75 0.32 5.14∗ 6.69∗
Mem 0.60 0.59 0.58 0.57 0.56 0.55 0.54 0.53 0.52 0.51 0.50 0.49

adash States 0.87 0.873 0.421 0.584 21362∗ 32166∗
Time 0.88 0.91 0.44 0.61 11.52∗ 17.27∗
Mem 0.49 0.48 0.47 0.46 0.45 0.44 0.43 0.42 0.41 0.40 0.39 0.38

sci States 0.914 0.799 0.833 0.797 0.693 0.818 0.626 0.305 34019∗ 41096∗ 47845∗ 91666∗
Time 0.95 0.8 0.84 0.8 0.69 0.86 0.64 0.32 5.28∗ 6.42∗ 7.39∗ 14.17∗
Mem 0.70 0.69 0.68 0.67 0.66 0.65 0.64 0.63 0.62 0.61 0.60 0.59

n peterson States 1.079 1.078 1.028 1.311 1.071 0.663 1.635 1.188 1.032 5588575∗
Time 1.2 1.2 1.14 1.46 1.18 0.73 1.82 1.32 1.14 368.17∗

Fig. 9. Comparison of CMurϕ and HubCMurϕ experimental results on an INTEL
Pentium 3.2GHz machine with 512M RAM

states and requires 563 Megabytes of memory to be verified with standard Murϕ
in 35,905 seconds.

CMurϕ was not able to complete verification with less than 225 Megabytes,
that is 40% of the required (563MB) memory.

On the other hand, as shown in Fig. 8, HubCMurϕ completed the verification
with about 163 MB, that is 29% of the required memory, and a time penalty
(w.r.t. standard Murϕ with 563MB of RAM) of 85%.

This suggests that for large protocols HubCMurϕ can achieve huge (about 71%
in our example above) memory savings, possibly at the expense of time. This is
better than being left with an out of memory message after hours of computation.

7 Conclusions

We presented a novel explicit verification algorithm that exploits hub states (Sec-
tion 3) to save on memory usage (Sections 4, 5). We implemented our algorithm
within the CMurϕ verifier [6] and call HubCMurϕ the resulting verifier.

Our experimental results (Section 6) show that, with respect to CMurϕ,
HubCMurϕ typically saves from 16% to 68% (45% on average) in computation
time.
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